Cascade Forward Neural Networks-based Adaptive Model for Real-time Adaptive Learning of Stochastic Signal Power Datasets

نویسندگان

چکیده

In this work, adaptive learning of a monitored real-time stochastic phenomenon over an operational LTE broadband radio network interface is proposed using cascade forward neural (CFNN) model. The optimal architecture the model has been implemented computationally in input and hidden units by means incremental search process. Particularly, we have applied adaptive-based cascaded for realistic practical signal data taken from cellular network. performance compared with benchmark feedforward (FFNN) number measured SINR datasets obtained period three months at two indoors outdoors locations results showed that CFNN provided best (0.9310 RMSE; 0.8669 MSE; 0.5210 MAE; 0.9311 R), to FFNN (1.0566 1.1164 0.5568 0.9131 R) first studied outdoor location. Similar robust performances were attained other locations, thus indicating it superior phenomenon.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation

In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Time Dependent Adaptive Neural Networks

A comparison of algorithms that minimize error functions to train the trajectories of recurrent networks, reveals how complexity is traded off for causality. These algorithms are also related to time-independent fonnalisms. It is suggested that causal and scalable algorithms are possible when the activation dynamics of adaptive neurons is fast compared to the behavior to be learned. Standard co...

متن کامل

Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method

The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Network and Information Security

سال: 2022

ISSN: ['2074-9090', '2074-9104']

DOI: https://doi.org/10.5815/ijcnis.2022.03.05